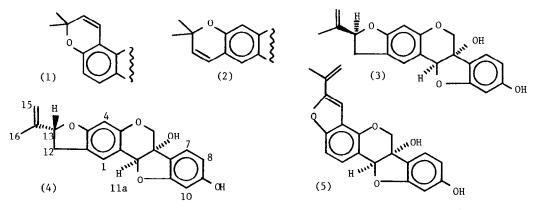
NOVEL PTEROCARPINOIDS FROM GLYCINE SPECIES

R.L. Lyne, L.J. Mulheirn and N.T. Keen*


Shell Research Limited, Shell Biosciences Laboratory, Sittingbourne Research Centre, Sittingbourne, Kent, ME9 8AG

* Department of Plant Pathology, University of California Riverside, California, U.S.A.

Summary : Bacteria-infected leaves of two <u>Glycine</u> species contain isoprenyl 6a-hydroxy pterocarpinoids including two novel compounds canescacarpin (<u>4</u>) and clandestacarpin (<u>5</u>), for which structure and stereochemistry have been determined.

In previous reports ^{1,2} we described five 6a-hydroxylated pterocarpinoids produced by soybean (<u>Glycine max</u> (L.) Merr.) in response to fungal infection or chemical injury. Metabolites of other members of the genus Glycine have now been examined and two novel pterocarpinoids have been isolated from infected leaves of <u>G</u>. <u>canescens</u> and <u>G</u>. <u>clandestina</u>.

Extraction of leaves of <u>G</u>. <u>canescens</u> (PI 399478)³ challenged with <u>Pseudomonas pisi</u> gave a fraction which, on purification by TLC and HPLC, gave three components in a 1 : 2 : 1 ratio. The less polar metabolites were identified as glyceollins I(<u>1</u>) and II(<u>2</u>). The third component crystallised from aqueous ethanol [m.p. $164-167^{\circ}$; C₂₀H₁₈0₅ (M⁺338.1148); λ_{max} (EtOH) 287 (8960), 292 (9210)nm]. UV, mass and CD spectra were similar to those of glyceollin III (<u>3</u>), though it gave a higher melting point and shorter HPLC retention time. The ¹H n.m.r. spectra of the two compounds were also similar, except for a small chemical shift difference observed in the d₆-benzene spectra for hydrogens at C-12 and C-13 (Table). Thus the new compound, canescacarpin, appeared to be a stereoisomer of (<u>3</u>), probably differing in configuration at C-13, since CD spectra indicated that both compounds have the 6a<u>S</u>, 11a<u>S</u> stereochemistry²*.

The proposed structure for canescacarpin (<u>4</u>) was confirmed by two experiments. Dehydration of (<u>3</u>) and (<u>4</u>) with formic acid gave the corresponding pterocarpenes. The CD spectra of the purified products (Θ_{max} (+)7,800 and (-)8,600 respectively at 247nm) confirmed that the <u>C.canescens</u> metabolite has the 13R configuration. This assignment was supported by treatment of (<u>3</u>) and (<u>4</u>) with osmium tetroxide-pyridine.¹ CD spectra of the resulting esters gave Cotton effects of opposite sign (Θ_{max} (+)4400 and (-)3940 respectively at 474nm).

^{*} In refs. 1 and 2, the absolute configurations of $(\underline{1})-(\underline{3})$ were erroneously described as $6a\underline{R}$, $11a\underline{R}$. The C-6a hydroxyl group reverses the priority of substituents relative to that of 6a-H 4,5pterocarpans.

Infection of leaves of <u>G</u>. <u>clandestina</u> (PI 248252)³ with <u>P</u>. <u>pisi</u> resulted in production of a single pterocarpinoid having an HPLC retention time between those of (1) and (2).Clandestacarpin $[C_{20}H_{16}O_5; M^+ 366.0998; \lambda max (EtOH)287, 310(sh)nm]$ could be identified as a ring-A substituted 6a-hydroxypterocarpan from its ¹H n.m.r. spectrum and the ease of dehydration with formic acid to a pterocarpene. CD spectra confirmed the 6aS, 11aS configuration of the metabolite, while its dehydration product contained no optically active chromophore.

The 360 MHz ¹H n.m.r. spectrum (Table) confirmed the oxygenation pattern of the aromatic rings and indicated attachment of a sidechain at C-4. The broad signal at 6.80δ , assigned to a β -proton in a benzofuran ring,⁶ and the presence of signals for two geminal olefinic protons and a vinyl methyl group indicated the structure of the side chain to be that of an α -substituted benzofuran, permitting assignment of structure (5) to the new metabolite.

The two new pterocarpinoids reported here have been detected in some other <u>Glycine</u> species. However, there is considerable variability both between and within species. For example eight strains of <u>G.clandestina</u> have been examined, only the first of which produces clandestacarpin. Full details of chemotaxonomic studies will be published elsewhere.

Ductor	(<u>3</u>)		(4)		(<u>5</u>)	
Proton	δ	J(Hz)	δ	J(Hz)	δ	J(Hz)
H ₁	7.27s	-	7.22s	-	7.43d	8
Н2	-	-	-		7.20d	8
H ₄	6.27s	-	6.22s	-	-	-
^H 7	7.23d	8	7.18d	8	7.26d	8
Н8	6.46q	8,2	6.38q	8,2	6.45q	8,2
^H 10	6.26d	2	6.23d	2	6.27d	2
^H 12	3.05 ^(b)	16,8	2.99 ^(c)	16,8	6.80\$	-
^H 12	3.42 ^(b)	16,9	3.35 ^(c)	16,9	-	-
^H 13	5.26	8	5,21	8	-	-
^H 15	4.91s ^(d)	-	4.88s ^(d)	- 1	$5.20s^{(d)}$	-
^H 15	5.08s ^(d)	-	5.05s ^(d)	-	5.72s ^(a)	-
Me 16	1.77s	-	1.78s	-	2.13s ^(d)	

¹H n.m.r. data for phytoalexins (3) - (5)^(a)

(a) spectra measured in $(CD_3)_2CO$ (internal TMS); (b) 2.58/2.78 δ in C_6D_6 ;

(c) $2.49/2.68\delta$ in C_6D_6 ; (d) broad signal.

References

- 1 . R.L. Lyne, L.J. Mulheirn and D.P. Leworthy, Chem. Comm., 497, (1976).
- 2 . R.L. Lyne and L.J. Mulheirn, Tetrahedron Letters, 3127, (1978).
- 3 . Seeds kindly supplied by Dr T. Hymowitz, U. Illinois, Urbana, Illinois, U.S.A.
- 4 . A. Pelter and P.I. Amenechi, J. Chem. Soc. (C), 887, (1969).
- 5. IUPAC, Pure Appl. Chem., <u>45</u>, 11 (1976); C.A.X.G.F. Sicherer and A. Sicherer-Roetman, Phytochemistry, <u>19</u>, 485 (1980).
- 6. M.E. Oberholzer, G.J.H. Rall and D.G. Roux, Phytochemistry, <u>15</u>, 1283, (1976). J.A. Elvidge and R.G. Foster, <u>J. Chem. Soc.</u>, 981, (1964).

(Received in UK 25 March 1981)